Archivio Categoria: Integrali

Metodo di integrazione per parti


Il metodo di integrazione per parti è una delle principali procedure di risoluzione di integrali utilizzato per calcolare l'integrale del prodotto di due funzioni.

Siano f e g due funzioni continue e derivabili in x, la derivata del prodotto delle due funzioni è pari a:

\displaystyle \frac{\text{d}}{\text{d}x}[f(x)g(x)]=\frac{\text{d}f(x)}{\text{d}x}g(x)+f(x)\frac{\text{d}g(x)}{\text{d}x}=f^\prime(x)g(x) + f(x)g^\prime(x)

Applicando ora l'operatore integrale ad entrambi i membri dell'equazione si ottiene:

\displaystyle \int \frac{\text{d}}{\text{d}x}[f(x)g(x)] \text{d}x = \int [f^\prime(x)g(x) + f(x)g^\prime(x)] \text{d}x = \int [f^\prime(x)g(x)] \text{d}x + \int [f(x)g^\prime(x)] \text{d}x

Per il teorema fondamentale del calcolo integrale si ha che:

\displaystyle f(x)g(x) = \int [f^\prime(x)g(x)] \text{d}x + \int [f(x)g^\prime(x)] \text{d}x.

Dalla precedente si ottiene la formula di integrazione per parti:

\displaystyle \int [f^\prime(x)g(x)] \text{d}x = f(x)g(x) - \int [f(x)g^\prime(x)] \text{d}x

Esercizi sugli integrali: integrazione per parti


Ricordiamo la formula di integrazione per parti: \displaystyle\int f(x)g^\prime(x) \text{d}x = f(x)g(x) - \int f^\prime(x)g(x) \text{d}x
ESERCIZIO
Risolvi l'integrale \displaystyle\int \sin(x) \cos(x) \text{d}x con il metodo di integrazione per parti:
SOLUZIONE
\displaystyle\int \sin(x) \cos(x) \text{d}x
Poniamo \displaystyle f(x) = \sin(x), \displaystyle g^\prime(x) = \cos(x), calcoliamo \displaystyle f^\prime(x) = \cos(x), \displaystyle g(x) = \sin(x) e sostituiamo nell'espressione:
\displaystyle\int f(x)g^\prime(x) \text{d}x = f(x)g(x) - \int f^\prime(x)g(x) \text{d}x
ottenendo:
\displaystyle\int \sin(x)\cos(x) \text{d}x = \sin(x)\sin(x) - \int \cos(x)\sin(x) \text{d}x
\displaystyle2 \int \sin(x)\cos(x) \text{d}x = \sin^2(x)
\displaystyle\int \sin(x)\cos(x) \text{d}x = \frac{\sin^2(x)}{2} + c

ESERCIZIO
Risolvi l'integrale \displaystyle \int x e^x \text{d}x con il metodo di integrazione per parti:
SOLUZIONE
\displaystyle \int x e^x \text{d}x
Poniamo \displaystyle f(x) = x , \displaystyle g^\prime(x) = e^x , calcoliamo \displaystyle f^\prime(x) =1, \displaystyle g(x)=e^x e sostituiamo nell'espressione:
\displaystyle\int f(x)g^\prime(x) \text{d}x = f(x)g(x) - \int f^\prime(x)g(x) \text{d}x
cioè:
\displaystyle \int x e^x \text{d}x = x e^x - \int e^x \text{d}x
\displaystyle \int x e^x \text{d}x = x e^x - e^x + c
\displaystyle \int x e^x \text{d}x = e^x (x - 1) + c

Esercizi sugli integrali: integrali di funzioni elementari

Integrali di funzioni elementari

ESERCIZIO

Calcola i seguenti integrali:

a) \displaystyle \int \left(x^2+3x+2\right) \ \mathrm dx
b) \displaystyle \int \left(\sqrt[3]{x^4}+3x^2+\sin x\right) \ \mathrm dx

SOLUZIONE
Ricordiamo che \displaystyle \int \left[k f(x)+h g(x)\right] \ \mathrm dx=k\int f(x) \ \mathrm dx +h\int g(x) \ \mathrm dx, cioè l'integrale della somma di funzioni è uguale alla somma degli integrali delle singole funzioni e le costanti che moltiplicano le funzioni possono essere portate fuori dall'integrale.

a) \displaystyle \int \left(x^2+3x+2\right) \ \mathrm dx=\int x^2 \ \mathrm dx + 3\int x \ \mathrm dx +\int 2 \ \mathrm dx= \frac{1}{2+1}x^{2+1}+\frac{3}{1+1}x^{1+1}+2x+c=\frac{1}{3}x^{3}+\frac{3}{2}x^{2}+2x+c

b) \displaystyle \int \left(\sqrt[3]{x^4}+3 x^2+\sin x\right) \ \mathrm dx=\int x^{\frac{4}{3}}\ \mathrm dx+3\int x^2\ \mathrm dx+\int \sin x\ \mathrm dx =\frac{1}{\frac{4}{3}+1}x^{\frac{4}{3}+1}+\frac{3}{2+1}x^{2+1}-\cos x+c=\frac{1}{\frac{7}{3}}x^{\frac{7}{3}}+\frac{3}{3}x^{3}-\cos x+c=\frac{3}{7}x^{\frac{7}{3}}+x^{3}-\cos x+c

Formulario sugli integrali indefiniti




FORMULARIO SUGLI INTEGRALI

Integrai fondamentali Integrali notevoli
\displaystyle \int k \,\text{d}x = k\,x +c
\displaystyle \int x^n \,\text{d}x = \frac{x^{n + 1}}{n + 1} +c \displaystyle \int f(x)^n \cdot f'(x)\,\text{d}x = \frac{f(x)^{n + 1}}{n + 1} +c
\displaystyle \int \frac{1}{ x} \,\text{d}x = \ln |x| +c \displaystyle \int \frac{1}{ f(x)}\cdot f'(x) \,\text{d}x = \ln |f(x)| +c
\displaystyle \int a^x \,\text{d}x =\frac{a^x }{\ln a}+c \displaystyle \int a^{f(x)}\cdot f'(x)\,\text{d}x =\frac{a^{f(x)}}{\ln a}+c
\displaystyle \int e^x \,\text{d}x =e^x +c \displaystyle \int e^{f(x)}\cdot f'(x)\,\text{d}x =e^{f(x)} +c
\displaystyle \int \cos x \,\text{d}x = \sin x +c \displaystyle \int \cos f(x)\cdot f'(x) \,\text{d}x = \sin f(x) +c
\displaystyle \int \sin x \,\text{d}x = - \cos x +c \displaystyle \int \sin f(x)\cdot f'(x)\,\text{d}x = - \cos f(x) +c
\displaystyle \int \frac{1}{\cos^2 x} \,\text{d}x = \tan x +c \displaystyle \int \frac{1}{\cos^2 f(x)}\cdot f'(x) \,\text{d}x = \tan f(x) +c
\displaystyle \int \frac{1}{\sin^2 x} \,\text{d}x =-\cot x +c \displaystyle \int \frac{1}{\sin^2 f(x)}\cdot f'(x) \,\text{d}x = -\cot f(x) +c
\displaystyle \int \frac{1}{\sqrt{1-x^2}}\,\text{d}x\,=\arcsin{x} +c \displaystyle \int \frac{1}{\sqrt{1-f(x)^2}}\cdot f'(x)\,\text{d}x=\arcsin{f(x)} +c
\displaystyle \int \frac{1}{1+x^2}\,\text{d}x\,=\arctan{x} +c \displaystyle \int \frac{1}{1+f(x)^2}\cdot f'(x)\,\text{d}x\,=\arctan{x} +c

Esercizi sugli integrali: Integrale doppio in coordinate polari


ESERCIZIO

Calcola il seguente integrale: \displaystyle \int\int _\Omega (x+y^2)dx dy

con \Omega=\lbrace (x, y)\in \mathbb{R}^2:1\leq x^2+y^2 \leq 4, x\geq0, y\geq 0\rbrace.

SOLUZIONE

Passiamo alle coordinate polari nel piano:

\left \{\begin{array}{ll} x=\rho\cos\vartheta\\ y=\rho\sin\vartheta\\ \end{array}\right.

con \rho=\sqrt{x^2+y^2}, \rho\geq 0 e 0\leq \vartheta <2\pi.

Nel nostro caso abbiamo:

\Omega'=\lbrace (\rho, \vartheta)\in \mathbb{R}^2:1\leq \rho \leq 2, 0\leq \vartheta \leq \frac{\pi}{2}\rbrace;

\displaystyle \int\int _{\Omega'} \left[\rho\cos\vartheta+(\rho\sin\vartheta)^2\right]\rho d\rho d\vartheta;

\displaystyle \int\int _{\Omega'} \left(\rho^2\cos\vartheta+\rho^3\sin^2\vartheta\right)d\rho d\vartheta;

\displaystyle \int_1^2 \rho^2d\rho\int_0^\frac{\pi}{2}\cos\vartheta d\vartheta+\int_1^2\rho^3d\rho\int_0^\frac{\pi}{2}\sin^2\vartheta d\vartheta=\displaystyle \left[\frac{1}{3}\rho^3\right]_1^2\left[\phantom{\frac{\pi}{2}}\sin\vartheta\right]_0^{\frac{\pi}{2}}+\left[\frac{1}{4}\rho^4\right]_1^2\left[\frac{1}{2}\left(\vartheta-\sin\vartheta\cos\vartheta\right)\right]_0^\frac{\pi}{2}=\frac{7}{3}+\frac{15}{16}\pi.

Esercizi sugli integrali: valore medio di una funzione

ESERCIZIO

Calcola il valore medio della funzione f(x)=x^3-2x nell'intervallo [1,4].

SOLUZIONE

Per calcolare il valore medio della funzione applichiamo il teorema della media integrale: \displaystyle f(c)=\frac{ 1 } { b-a } \int_a^b f(x) dx.

Nel nostro caso \displaystyle f(c)=\frac{ 1 } { 4-1} \int_1^4 (x^3-2x)dx=\frac{ 1 } { 3}\left [\frac{ 1 } { 4}x^4-x^2 \right]_1^4=\frac{ 1 } { 3}\left [\left(\frac{ 1 } { 4}\cdot 4^4-4^2 \right)-\left(\frac{ 1 } { 4}-1\right )\right]=\frac{ 1 } { 3}\left(48+\frac{ 3 } { 4}\right)=\frac{ 1 } { 3}\cdot \frac{ 195 } { 4}=\frac{ 65 } { 4}.

Esercizi sugli integrali: integrale del logaritmo naturale

NEW: INVIA SU WHATSAPP (371.3321311) UN ESERCIZIO CHE NON SAI RISOLVERE E FAI UNA DONAZIONE PER SOSTENERE IL SITO.

Integrale del logaritmo naturale

ESERCIZIO

Calcola il seguente integrale: \displaystyle \int lnxdx

SOLUZIONE

Per risolvere l'integrale applichiamo la formula di integrazione per parti:  \displaystyle \int f(x)g'(x)dx=f(x)g(x)-\int f'(x)g(x)dx. Ponendo f(x)=lnx e g'(x)=1, calcoliamo f'(x)=\frac {1}{x} e g(x)=x e li sostituiamo nella formula:

\displaystyle \int lnx dx=xlnx-\int x \cdot \frac {1}{x}dx=xlnx-x+c=x(lnx-1)+c

Esercizi sugli integrali: lunghezza di una curva

ESERCIZIO

Data una curva di equazioni parametriche \Phi(t)=(\sin t, t, 1-\cos t), con t\in[0, 2\pi], si calcoli la sua lunghezza l(\Phi).

SOLUZIONE

Consideriamo le componenti x(t)=\sin t, y(t)=t, z(t)=1-\cos t e le rispettive derivate x'(t)=\cos t, y'(t)=1, z'(t)=\sin t.

La lunghezza della curva è data da \displaystyle l(\Phi)=\int_0^{2\pi}\sqrt{\cos^2 t+ 1 +\sin^2 t} dt=\int_0^{2\pi}\sqrt{2} dt=[\sqrt{2}t]_0^{2\pi}=2\sqrt{2}\pi.

 

Esercizi sugli integrali: integrazione per sostituzione

Calcola i seguenti integrali con il metodo di integrazione per sostituzione:

ESERCIZIO 1) \displaystyle \int\frac{e^{x}}{\sqrt{1-e^{2x}}}dx.

SOLUZIONE

Poniamo t=e^x da cui dt=e^x dx.

Effettuiamo la sostituzione e calcoliamo l'integrale immediato \displaystyle \int\frac{1}{\sqrt{1-t^2}}dt=arcsin(t)+c .

Poi ritorniamo alla variabile x:  \displaystyle \int\frac{e^{x}}{\sqrt{1-e^{2x}}}dx=arcsin(e^x)+c .

ESERCIZIO 2) \displaystyle \int\frac{\sqrt{tan x}}{cos^2x}dx.

SOLUZIONE

Poniamo tan x=t da cui \frac{1}{cos^2x}dx=dt.

Effettuiamo la sosituzione e calcoliamo l'integrale immediato \displaystyle \int\sqrt{t}dt=\frac{2}{3}t^{\frac{3}{2}}+c.

Poi ritorniamo alla variabile x:  \displaystyle \int\frac{\sqrt{tan x}}{cos^2x}dx=\frac{2}{3}(tanx)^{\frac{3}{2}}+c.