Archivi Tag: metodo di integrazione per parti

Metodo di integrazione per parti


Il metodo di integrazione per parti è una delle principali procedure di risoluzione di integrali utilizzato per calcolare l'integrale del prodotto di due funzioni.

Siano f e g due funzioni continue e derivabili in x, la derivata del prodotto delle due funzioni è pari a:

\displaystyle \frac{\text{d}}{\text{d}x}[f(x)g(x)]=\frac{\text{d}f(x)}{\text{d}x}g(x)+f(x)\frac{\text{d}g(x)}{\text{d}x}=f^\prime(x)g(x) + f(x)g^\prime(x)

Applicando ora l'operatore integrale ad entrambi i membri dell'equazione si ottiene:

\displaystyle \int \frac{\text{d}}{\text{d}x}[f(x)g(x)] \text{d}x = \int [f^\prime(x)g(x) + f(x)g^\prime(x)] \text{d}x = \int [f^\prime(x)g(x)] \text{d}x + \int [f(x)g^\prime(x)] \text{d}x

Per il teorema fondamentale del calcolo integrale si ha che:

\displaystyle f(x)g(x) = \int [f^\prime(x)g(x)] \text{d}x + \int [f(x)g^\prime(x)] \text{d}x.

Dalla precedente si ottiene la formula di integrazione per parti:

\displaystyle \int [f^\prime(x)g(x)] \text{d}x = f(x)g(x) - \int [f(x)g^\prime(x)] \text{d}x

Esercizi sugli integrali: integrazione per parti


Ricordiamo la formula di integrazione per parti: \displaystyle\int f(x)g^\prime(x) \text{d}x = f(x)g(x) - \int f^\prime(x)g(x) \text{d}x
ESERCIZIO
Risolvi l'integrale \displaystyle\int \sin(x) \cos(x) \text{d}x con il metodo di integrazione per parti:
SOLUZIONE
\displaystyle\int \sin(x) \cos(x) \text{d}x
Poniamo \displaystyle f(x) = \sin(x), \displaystyle g^\prime(x) = \cos(x), calcoliamo \displaystyle f^\prime(x) = \cos(x), \displaystyle g(x) = \sin(x) e sostituiamo nell'espressione:
\displaystyle\int f(x)g^\prime(x) \text{d}x = f(x)g(x) - \int f^\prime(x)g(x) \text{d}x
ottenendo:
\displaystyle\int \sin(x)\cos(x) \text{d}x = \sin(x)\sin(x) - \int \cos(x)\sin(x) \text{d}x
\displaystyle2 \int \sin(x)\cos(x) \text{d}x = \sin^2(x)
\displaystyle\int \sin(x)\cos(x) \text{d}x = \frac{\sin^2(x)}{2} + c

ESERCIZIO
Risolvi l'integrale \displaystyle \int x e^x \text{d}x con il metodo di integrazione per parti:
SOLUZIONE
\displaystyle \int x e^x \text{d}x
Poniamo \displaystyle f(x) = x , \displaystyle g^\prime(x) = e^x , calcoliamo \displaystyle f^\prime(x) =1, \displaystyle g(x)=e^x e sostituiamo nell'espressione:
\displaystyle\int f(x)g^\prime(x) \text{d}x = f(x)g(x) - \int f^\prime(x)g(x) \text{d}x
cioè:
\displaystyle \int x e^x \text{d}x = x e^x - \int e^x \text{d}x
\displaystyle \int x e^x \text{d}x = x e^x - e^x + c
\displaystyle \int x e^x \text{d}x = e^x (x - 1) + c